Let say for every 5 s of time interval the speed will remain constant
so it is given as
v(mi/h) 16 21 23 26 33 30 28
now we have to convert the speed into ft/s as it is given that 1 mi/h = 5280/3600 ft/s
so here we will have
v(ft/s) 23.5 30.8 33.73 38.13 48.4 44 41.1
now for each interval of 5 s we will have to find the distance cover for above interval of time



so here it will cover 1298.1 ft distance in 30 s interval of time
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
--------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
= 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
(
therefore : V = 1.624* 10^-5 m/s
Answer:
false
Explanation:
If they were farther apart they would be able to slip by through which means that it can go by faster. If the atoms where closer together then yes they would be able to go by slower.
Can you translate to english ?