The chemical equation is unbalanced and synthesized.
<h3>
</h3><h3>
What is a chemical equation?</h3>
A chemical equation is described as the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.
In a chemical equation, the reactant entities are given on the left-hand side and the product entities is shown on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that indicates towards the products to show the direction of the reaction.
We can conclude that in the chemical equation shown is unbalanced because both amounts of the individual elements and compounds do not reflect on the reactant and product side.
Learn more about chemical equations at: brainly.com/question/11231920
#SPJ1
The complete question is below:
After learning about the law of conservation of mass, Sammy became interested in balancing equations. He knew that the symbol for aluminum was Al and silver tarnish was Ag2S. He also knew that mixing the two chemicals yielded pure silver, or Ag, in an aluminum sulfide solution. Here is the equation showing this reaction:
3 Ag2S + 2 Al → 6 Ag + Al2S3
This equation is (synthesis / unbalanced / replacement / balanced), and it represents a(n) (unbalanced / balanced / synthesized / replaced) chemical reaction.
answer choices:
Answer:
Since they're easy to separate, covalent compounds have low melting and boiling points. 2) Covalent compounds are soft and squishy (compared to ionic compounds, anyway). The reason for this is similar to the reason that covalent compounds have low melting and boiling points. When you hit an ionic compound with something, it feels very hard
Explanation:
mark brainliest plz
15 grams of NH3 can be dissolved
<h3>Further explanation</h3>
Given
50 grams of water at 50°C
Required
mass of NH3
Solution
Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility
- 1. Temperature:
- 2. Surface area:
- 3. Solvent type:
- 4. Stirring process:
We can use solubility chart (attached) to determine the solubility of NH3 at 50°C
From the graph, we can see that the solubility of NH3 in 100 g of water at 50 C is 30 g
So that the solubility in 50 grams of water is:
= 50/100 x 30
= 15 grams
It is a solid in its natural state but it can be a liquid
I think it’s B 5.54 x 10^2g