Answer:
Level 4 to level 2
Explanation:
Electrons in an atom are contained in specific energy levels (1, 2, 3, and so on) having different distances from the nucleus. When light is emitted by electrons from one energy level to a lower level, level 4 to level 2 has the greatest energy.
Hence, the correct option is "Level 4 to level 2".
This question is asking you to determine if individual atoms or systems, or both have these types of energy. A system would be "all the molecules or atoms" whereas an individual atom is "each of the molecules or atoms."
Answers:
A. All the molecules or atoms in motion have kinetic energy.
B. Each molecule or atom in motion has kinetic energy.
D. All the molecules or atoms in motion have thermal energy.
The only incorrect answer is C because individual atoms don't have thermal energy, only when they interact with other atoms. Still, atoms do have kinetic energy, which has the potential to turn into heat energy in these interactions.
Hope this helps!
If you heat that air by 100 degrees F, it weighs about 7 grams less. Therefore, each cubic foot of air contained in a hot air balloon can lift about 7 grams. That's not much, and this is why hot air balloons are so huge -- to lift 1,000 pounds, you need about 65,000 cubic feet of hot air.
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)
Answer:
a. Wet, soft dough at 85 degrees Fahrenheit
Explanation:
Fermentation is an anaerobic process that transforms starches into simpler substances. The rising of dough is due to fermentation.
According to Harold McGee, 85°F (29°C) is the best temperature for fermenting bread dough. Temperatures below 85°F (29°C) take much longer to ferment, and temperatures higher than that result into unpleasant flavors in the dough.
Wet, soft dough is usually more preferable because it produces a softer bread.