<h2>Answer:</h2>
<u>Turning a magnet very quickly would be BEST used to create an electric current</u>
<h2>Explanation:</h2>
In Electromagnetic waves electric field produces magnetic field and vice versa. A moving magnet can produce electric current. Dynamo is the best example for it. In dynamo armature is rotated between the magnets which results in the development of electric field and hence an electric current is produced in it.
Answer:
0.75 m
Explanation:
Let's call the distance between the bulb and the mirror x.
The bulb and the length of the mirror form a triangle. The mirror and the illuminated area on the floor form a trapezoid. If we extend the lines from the mirror edge to the reflected image of the bulb, we turn that trapezoid into a large triangle. This triangle and the small triangle are similar. So we can say:
x / 0.4 = (3 + x) / 2
Solving for x:
2x = 0.4 (3 + x)
2x = 1.2 + 0.4 x
1.6 x = 1.2
x = 0.75
So the bulb should located no more than 0.75 m from the mirror.
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
Answer:


Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

The horizontal component of the velocity is always the same:

The vertical component at t=5.5 s is:

