Answer:
The initial speed of the block is 1.09 m/s
Explanation:
Given;
mass of block, m = 1.7 kg
force constant of the spring, k = 955 N/m
compression of the spring, x = 4.6 cm = 0.046 m
From principle of conservation of energy
kinetic energy of the block = elastic potential energy of the spring
¹/₂mv² = ¹/₂kx²
mv² = kx²

where;
v is the initial speed of the block
x is the compression of the spring

Therefore, the initial speed of the block is 1.09 m/s
Answer:
If the ray of light is deflected by 45 degrees by the first mirror its total deflection by mirror (I) is 90 deg. (incident = 45 and exit ray equals 45 deg)
The second mirror will cause a net deflection of 90 degrees and the total deflection will be 180 deg or in opposite direction to the incident ray.
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>
Answer:
The charge flows in coulombs is

Explanation:
The current magnitude of current is given by the resistance and the induced Emf as:



,
,
,
Ω
,
Replacing :


Protons do not move out of the nucleus of atoms although they repel each other.
Remember that protons are particles with positive charge and they held together in the nucleus of the atom which is a tiny tiny region. As you know, like charges repel each other, which means that the protons exert a repulsion force.