Answer:
Option B is the correct answer.
Explanation:
Thermal expansion

L = 1.2 meter
ΔT = 65 - 15 = 50°C
Thermal Expansion Coefficient for aluminum, α = 24 x 10⁻⁶/°C
We have change in length

New length = 1.2 + 1.44 x 10⁻³ = 1.2014 m
Option B is the correct answer.
Answer
Hertzsprung-Russell (HR) diagram is an essential tool used in stellar evolution. In the universe, there are several hundreds of billions of stars. Scientists use the tool, in differentiation, the billions of stars in the world from the sun. In the HR tool, there is plotting of the luminosity or energy output of a star, which is plotted on the X-axis of a graph against the absolute magnitude. The sun's magnitude is an absolute of +48, which, when plotted against its luminosity, helps in setting an apparent variance between the sun and any other star. Additionally, the sun has been identified as the primary star with a very high temperature. Hence the tool can locate the sun from other forms of stars. HR diagrams outline data such as temperature and luminosity or energy. However, star distance from the Erath is not a type of data represented in the charts.
Explanation:
Hope this helped you!
Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.
Answer:
u = 11.6 m/s
Explanation:
The end of a launch ramp is directed 63° above the horizontal. A skier attains a height of 10.9 m above the end of the ramp.
Maximum height, H = 10.9
Let v is the launch speed of the skier. The maximum height attained by the projectile is given by :


u = 11.6 m/s
So, the launch speed of the skier is 11.6 m/s. Hence, this is the required solution.
In order to calculate the thermal energy, first let's calculate the power, using the formula:

For a voltage V = 9 Volts and a resistance R = 50 ohms, we have:

Now, multiplying the power by the time (in seconds), we can find the energy:

In scientific notation, we have an energy of 7.3 * 10^2 J, therefore the correct option is the fourth one.