Answer:
2.9 A
Explanation:
L = 16 cm = 0.16 m
B = 0.19 T
m = 9 g = 0.009 kg
Let the minimum current be i.
Magnetic force is balanced by the gravitational force
B x i x L = m x g
0.19 x i x 0.16 = 0.009 x 9.8
i = 2.9 A
Since each time trial is the same the average will be the direct answer, and the formula for velocity is distance divided by time, therefore it will come out to, 1.92307692. Whatever your teacher what the rounding process to be will vary but the straight up answer is there.
The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4
You are Thomas Alva Edison. You also invented the phonograph
and the first practical movie camera. Sadly, you died almost exactly
9 years before I was born.
The name of this landmas is known as <em>
</em>
Pangaea, was a supercontinent that existed during the late
Paleozoic and
early
Mesozoic eras. It formed approximately 300 million years ago and began to break apart after about 100 million years.
Theres an image of how this supercontinet looked