Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:

Explanation:
One mole of a substance contains the same amount of representative particles. These particles can be atoms, molecules, ions, or formula units. In this case, the particles are atoms of titanium.
Regardless of the particles, there will always be <u>6.02*10²³</u> (also known as Avogadro's Number) particles in one mole of a substance.
Therefore, the best answer for 1 mole of titanium is D. 6.02*10²³ atoms.
Here is the answer to your question
Answer:
b) Nothing will happen, the sea saw will still be balanced.
Explanation:
b) Nothing will happen, the sea saw will still be balanced.
Reason:-
When two kids are balanced, the sum of torques on the seesaw will be zero.
if each kid, reduces their distances by half, then the torque of each kid will be half and the sum of torque of each on the seesaw will be zero.
Therefore the seesaw is balanced
The final velocity is 5.87 m/s
<u>Explanation:</u>
Given-
mass,
= 72 kg
speed,
= 5.8 m/s
,
= 45 kg
,
= 12 m/s
Θ = 60°
Final velocity, v = ?
Applying the conservation of momentum:
X
+
X
= (
+
) v
72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v
v = 417.6 + 540 X 
v = 417.6 + 
v = 5.87 m/s
The final velocity is 5.87 m/s