A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.
Kinetic energy
The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.
To learn more about kinetic energy refer here:
brainly.com/question/11301578
#SPJ4
Newton’s first law because the airplane needs space to fully stop due to its inertia
(a) The average speed from A to B would be 1.76 metre per second and the average velocity from A to B would also be 1.76 metre per second
<span>(b) The average speed from A to C would be 1.73 metre per second and the average velocity from A to C would be 0.87 metre per second</span>
(a) The velocity of the object on the x-axis is 6 m/s, while on the y-axis is 2 m/s, so the magnitude of its velocity is the resultant of the velocities on the two axes:

And so, the kinetic energy of the object is

(b) The new velocity is 8.00 m/s on the x-axis and 4.00 m/s on the y-axis, so the magnitude of the new velocity is

And so the new kinetic energy is

So, the work done on the object is the variation of kinetic energy of the object:
26°F
.............................................................