Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is
![v_x = u cos \theta](https://tex.z-dn.net/?f=v_x%20%3D%20u%20cos%20%5Ctheta)
where u is the initial speed and
. The horizontal distance travelled by the salmon is
![d=v_x t = (ucos \theta)t](https://tex.z-dn.net/?f=d%3Dv_x%20t%20%3D%20%28ucos%20%5Ctheta%29t)
where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is
![y=h+u_y t -\frac{1}{2}gt^2](https://tex.z-dn.net/?f=y%3Dh%2Bu_y%20t%20-%5Cfrac%7B1%7D%7B2%7Dgt%5E2)
where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation
![y=(u sin \theta) \frac{d}{u cos \theta}- \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}=d tan \theta - \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}](https://tex.z-dn.net/?f=y%3D%28u%20sin%20%5Ctheta%29%20%5Cfrac%7Bd%7D%7Bu%20cos%20%5Ctheta%7D-%20%5Cfrac%7B1%7D%7B2%7Dg%5Cfrac%7Bd%5E2%7D%7Bu%5E2%20cos%5E2%20%5Ctheta%7D%3Dd%20tan%20%5Ctheta%20-%20%5Cfrac%7B1%7D%7B2%7Dg%5Cfrac%7Bd%5E2%7D%7Bu%5E2%20cos%5E2%20%5Ctheta%7D)
and we can solve this formula for u, the initial speed of the salmon:
![y=d tan \theta - \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}\\\\u=\sqrt{\frac{gd^2}{2(dtan \theta -y)cos^2 \theta}}=\sqrt{\frac{(9.81)(1.95)^2}{2((1.95)(tan 37.7^{\circ}) -0.311)cos^2 37.7^{\circ}}}=5.0 m/s](https://tex.z-dn.net/?f=y%3Dd%20tan%20%5Ctheta%20-%20%5Cfrac%7B1%7D%7B2%7Dg%5Cfrac%7Bd%5E2%7D%7Bu%5E2%20cos%5E2%20%5Ctheta%7D%5C%5C%5C%5Cu%3D%5Csqrt%7B%5Cfrac%7Bgd%5E2%7D%7B2%28dtan%20%5Ctheta%20-y%29cos%5E2%20%5Ctheta%7D%7D%3D%5Csqrt%7B%5Cfrac%7B%289.81%29%281.95%29%5E2%7D%7B2%28%281.95%29%28tan%2037.7%5E%7B%5Ccirc%7D%29%20-0.311%29cos%5E2%2037.7%5E%7B%5Ccirc%7D%7D%7D%3D5.0%20m%2Fs)