Answer:
6.67 moles
Explanation:
Given that:-
Moles of hydrogen gas produced = 10.0 moles
According the reaction shown below:-

3 moles of hydrogen gas are produced when 2 moles of aluminium undergoes reaction.
Also,
1 mole of hydrogen gas are produced when
moles of aluminium undergoes reaction.
So,
10.0 moles of hydrogen gas are produced when
moles of aluminium undergoes reaction.
<u>Moles of Al needed =
moles = 6.67 moles</u>
Answer: A wave
Explanation:
Because it’s the one that’s cause the new medium to go between the two media.
Cu+ p=29 e=28 n=34
S2- p=16 e=18 n=16
Pb4+ p=82 e=78 p=125
I hope i did it right :))
Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.