Answer:
26.822 m/s
Explanation:
60 mi/hr * 5280 ft/mile * 1 hr / 3600 sec * 12 in / foot * 1 meter / 39.37 in = <u>26.822 m/s</u>
The amplitude of the wave on the given sinusoidal wave graph is 10 cm.
<h3>
What is amplitude of wave?</h3>
The amplitude of a wave is the maximum displacement of a wave. This is the highest vertical position of the wave from the origin.
Amplitude of the wave is calculated as follows;
From the graph, the amplitude of the wave or maximum displacement of the wave is 10 cm.
Thus, the amplitude of the wave on the given sinusoidal wave graph is 10 cm.
Learn more about wave amplitude here: brainly.com/question/25699025
Answer:
B. They are inversely proportional to the square of the distance.
Explanation:
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the distance between the two objects
While the electrical force is given by

where
k is the Coulomb's constant
q1, q2 are the charges of the two objects
r is the distance between the two objects
As we see from the two equations, both forces are inversely proportional to the square of the distance, so the correct option is
B. They are inversely proportional to the square of the distance.
It's been a while since I've studied this, but my answers would be:
13. 5730 years. The half-life of a substance is the amount of time it takes for half of it to decay, and, according to the graph, half of the substance remained at 5730 years.
14. 10740 years. According to the graph, only 25% of the carbon remained after 10740 years.
15. 15 atoms. According to the graph, only 12.5% of the carbon remained after 16110 years. 12.5% of 120 atoms is 15 atoms.
16. 1600 atoms. According to the graph, if a sample of carbon is 10740 years old, only 25% of it remains. To find the original amount, multiply the current amount by (100% / 25%), which equals 4. So, 4. 400 atoms * 4 = 1600 atoms is the original amount.
Answer:
A very massive main- sequence star
Explanation:
Degeneracy pressure refers to pressure expend by dense material , which is composed of fermions, which is an example of electrons in a white dwarf star. According to Pauli exclusion principle, which states that no two fermions can exist in the same quantum state, actually give details about the pressure.
When there is stellar masses that is less than about 1.44 of that of solar masses, there will be gravitational fall in the energy , and the energy will not be sufficient to produce the neutrons of a neutron star, therefore, the fall is abstruptly stopped through the electron degeneracy to form white dwarfs.this result to the creation of an effective pressure that further prevents gravitational fall.