Answer:
A) d = 11.8m
B) d = 4.293 m
Explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m
I don't understand this question
Considering that while traveling on a road with a<u> final speed of 15 m/s</u>, and an<u> initial speed of 24 m/s</u>, with a given time <u>of 12 seconds.</u>
To calculate the acceleration, we apply the following formula:
α = Vf - Vo/t
We add our data into the formula and solve:
α = 15 m/s - 24 m/s/12 sec
α = -0.75 m/s²
Therefore, the acceleration of the car is -0.75 m/s².
<h2>Skandar</h2>
Answer:
9.8 m/s²
Explanation:
Earths gravity acts upon objects with a steady force of 9.8 m/s². The force of gravity is attractive in nature. It acts between two objects. It always acts towards the ground. The force off gravity is given by :
F = W = mg
m is mass of the object and g is the acceleration due to gravity. The value of g is 9.8 m/s². Hence, Earth's gravity acts upon objects with a steady force of 9.8 m/s².