Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.

where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,

solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
B
V= f x lambda
V= 5m/s
F = 10hz
Lambda = ?
5 = 10 x lamba
5 /10 = lambda
Wavelength =0.5
Answer:
Following are the responses to this question:
Explanation:
The small current passes thru the capacitor of the strain gauge and the current is generated throughout the resistor. For the very first time, in contrast to what we calculate, its resistance of the multimeter is quite high and therefore the small stream flowing through the bulb would have very little impact on the measure. Thus, as the current flows through the flashbulb, this same calculation is of excellent price, its material is heated and resistance varies with increase. Therefore, when the bulb will be on, sensitivity is greater.
9.3 x 10⁻⁶N
Explanation:
Given parameters:
Mass 1 = 70kg
Mass 2 = 2000kg
distance = 1m
Unknown:
force between them =
Solution:
The force between the two masses will be a gravitational force of attraction.
F = 
G is universal gravitation constant = 6.67430×10−¹¹ N⋅m²/kg²
r is the distance between the two masses
Substituting the parameters:
F =
= 9.3 x 10⁻⁶N
Learn more:
Universal gravitation constant
brainly.com/question/1724648
#learnwithBrainly