Answer:
1.35208 m/s
Explanation:
Speed of the boat = 0.75 m/s
Distance between the shores = 100 m
Time = Distance / Speed
![Time=\frac{100}{0.75}=133.33\ s](https://tex.z-dn.net/?f=Time%3D%5Cfrac%7B100%7D%7B0.75%7D%3D133.33%5C%20s)
Time taken by the boat to get across is 133.33 seconds
Point C is 150 m from B
Speed = Distance / Time
![Speed=\frac{150}{\frac{100}{0.75}}=1.125\ m/s](https://tex.z-dn.net/?f=Speed%3D%5Cfrac%7B150%7D%7B%5Cfrac%7B100%7D%7B0.75%7D%7D%3D1.125%5C%20m%2Fs)
Velocity of the water is 1.125 m/s
From Pythagoras theorem
![c=\sqrt{0.75^2+1.125^2}\\\Rightarrow c=1.35208\ m/s](https://tex.z-dn.net/?f=c%3D%5Csqrt%7B0.75%5E2%2B1.125%5E2%7D%5C%5C%5CRightarrow%20c%3D1.35208%5C%20m%2Fs)
So, the man's velocity relative to the shore is 1.35208 m/s
Answer:
A. Argon
Explanation:
It is a noble gas, a group which is not reactive.
Answer:
c)
V_local = -x/t^2
V_convec = x/t^2
d)
a = V_local + V_convec = 0
e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases
Explanation:
Hi!
You can see plots for a) and b) attached on this document
c)
The local acceleration is just teh aprtial derivative of the velocity with respect to t:
![\frac{dV}{dt} = \frac{d}{dt} \frac{x}{t}=- \frac{x}{t^2}](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cfrac%7Bx%7D%7Bt%7D%3D-%20%5Cfrac%7Bx%7D%7Bt%5E2%7D)
And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:
![\vec{v} \cdot \nabla \vec{v} = v ( \frac{dv}{dx} ) =\frac{x}{t} \frac{1}{t} = \frac{x}{t^2}](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D%20%5Ccdot%20%5Cnabla%20%5Cvec%7Bv%7D%20%3D%20v%20%28%20%5Cfrac%7Bdv%7D%7Bdx%7D%20%29%20%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5Cfrac%7B1%7D%7Bt%7D%20%3D%20%5Cfrac%7Bx%7D%7Bt%5E2%7D)
d)
Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign
e)
This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases, the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero
Answer:
1. sediment layering and compacting on top of each other and solidifying
2. sediment layering and compacting (not as much) on top of each other and solidifying, just not as much
Explanation:
hope this helps! :))