Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

Answer:
The second law: When a force is applied to a car, the change in motion is proportional to the force divided by the mass of the car. This law is expressed by the famous equation F = ma, where F is a force, m is the mass of the car, and a is the acceleration, or change in motion, of the car
Answer: conduction :it transfers heat between objects that are in direct contact with eachother
Answer:
The initial velocity is 50 m/s.
(C) is correct option.
Explanation:
Given that,
Time = 10 sec
For first half,
We need to calculate the height
Using equation of motion

....(I)
For second half,
We need to calculate the time
Using equation of motion



Put the value of h from equation (I)


According to question,


Put the value of t₁ and t₂



Here, g = 10
The initial velocity is


Hence, The initial velocity is 50 m/s.