1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
14

What is the mechanical advantage of a pulley system​

Physics
1 answer:
tatuchka [14]3 years ago
7 0

Answer:

Pulleys accomplish 2 separate operations throughout the computer controlled additional benefit technologies listed elsewhere here.

Explanation:

  • If indeed the pulley would be connected to that same attachment point, these are named a corrected pendulum or perhaps a change in direction. Its job should be to reverse the trajectory of that same rope pull.  
  • Unless the pulley would be connected to that same load, this same pulley seems to be a detachable as well as a mechanical additional benefit.
You might be interested in
A ball strikes a wall. It exerts a force of 10 N to the left against the wall and bounces off. What force does the wall exert on
Galina-37 [17]
The wall exerts a force of equal magnitude but in the opposite direction. So the force by the wall is 10 N to the right.
6 0
3 years ago
Read 2 more answers
The mass of a ship before launch is 55,000 metric tons. The ship is launched down a ramp and drops a total of 10 vertical meters
skelet666 [1.2K]

Answer:

ΔT = 17.11 °C

Explanation:

In this case, we have a ship standing on a place with a given mass and it's about to be launched to a lock containing water.

At first, before launch, the ship has a potential energy, and when the ship hits the water after being launched, this potential energy is transformed into kinetic energy.

So, let's calculate first the potential energy of the ship:

E = mgh   (1)

We have the mass, gravity and height, so we need to replace the given data here. Before we do that, let's remember to use the correct units. A ton is 1000 kg, so replacing and converting we have:

E = (55000 ton * 1000 kg/ton) * (9.8 m/s²) * 10 m

E = 5.39x10⁹ J

Now this energy will be the same when the ship hits the water, only that is kinetic energy that will result in the rise of temperature. To get this rise we use the following expression:

E = m * C * ΔT   (2)

We have the energy, the mass of water (assuming density of water as 1 kg/m³) and the specific heat, so, replacing in (2) and solving for ΔT we have:

ΔT = E / m * C    (3)

ΔT = 5.39x10⁹ / 4200 * 75000

<h2>ΔT = 17.11 °C</h2>

Hope this helps

5 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
3 years ago
A 5.0 kg object moving at 5.0 m/s. KE = mv2 times 1/2
steposvetlana [31]

Answer: KE = 62.5J

Explanation:

Given that

Mass of object = 5kg

kinetic energy KE = ?

velocity of object = 5m/s

Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.

i.e K.E = 1/2mv^2

KE = 1/2 x 5kg x (5m/s)^2

KE = 0.5 x 5 x 25

KE = 62.5J

Thus, the object has 62.5 joules of kinetic energy.

5 0
3 years ago
Charges that do not transfer
ratelena [41]

Answer:what is the question exactly

Explanation:

8 0
3 years ago
Other questions:
  • The mineral needed in blood is.<br> 1.iodine<br> 2.oxygen<br> 3.iron<br> 4.soduim<br> 5.hemoglobin
    10·2 answers
  • When a cyclist rides past you on the street, this is an example of
    6·1 answer
  • 13. What's most intriguing about Titan's atmosphere?
    11·1 answer
  • Please Help!!!!! If you were in a completely weightless environment, would you need a force to make an object at rest start to m
    10·1 answer
  • The pressure of gas is 13.6 CM of HG what does this mean​
    7·1 answer
  • The electric current is a
    7·1 answer
  • One strategy in a snowball fight is to throw a snowball at a high angle over level ground. While your opponent is watching the f
    5·1 answer
  • How can the potential energy in magnets be used to create kinetic energy in an object without making contact?
    8·1 answer
  • Please help very easy 5th grade work giving brainliest
    10·1 answer
  • How many kcalories are provided by a food that contains 25 g carbohydrate, 6 g protein, and 5 g fat?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!