If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil
In short, Your Answer would be: "Zero"
Hope this helps!
Answer:
Part A
The intensity is
Part B
The intensity is 
Explanation:
From the question we are told that
The intensity of the light detected by first eye is 
Now at initial state according the question the light ray is perpendicular to the eye so it means that it is at 90° the eye
Now the first question is to obtain the intensity the first eye (the first in this case is the one focused on the light )would detect when the head is rotated by 20° its previous orientation
This is mathematically evaluated as

Now the second question is to obtain the intensity the first eye (the first eye in this case is the one that is not focused on the light )would detect when the head is rotated by 20° its previous orientation
Now in this case the angle between the eye and the light is 90-20 = 70°
So


acceleration = 7 m/s²
Explanation:
To determine the object's acceleration we use the following formula:
force (N) = mass (kg) × acceleration (m/s²)
acceleration (m/s²) = force (N) / mass (kg)
acceleration = 56 N / 8 kg
acceleration = 7 m/s²
Learn more about:
acceleration
brainly.com/question/12097332
brainly.com/question/205090
#learnwithBrainly
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1