32f. That's because the force is directly proportional to the product of the masses and inversely proportional to the square of the distance. So you get 2•(1/1/4)^2=2•16=32
Answer:
D. Cold, dry air
(Just took the quiz and got it right, hope this helps :3)
Explanation:
amazing that you learned a lot of great ideas on your summary business you well from to and as learned that they can do well with their lives for you in the past few they will be a child whose mass is the best thing) )for
Answer:
The Anatomy of a Lens
Refraction by Lenses
Image Formation Revisited
Converging Lenses - Ray Diagrams
Converging Lenses - Object-Image Relations
Diverging Lenses - Ray Diagrams
Diverging Lenses - Object-Image Relations
The Mathematics of Lenses
Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)
Answer:
The current through it will also decrease to half of its former value because according to Ohm's law the current flowing through a resistor is directly proportional to the potential difference applied across its ends provided that the temperature and some other necessary conditions remain constant.
This is mathematically represented as follows;

The current is thus given as

if R is constant and V is reduced to half, then we have the following;

Simplifying further we obtain

Equation (3) shows that the current I is also reduced to half.