Answer:
50 N
Explanation:
Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).
I hope this helps! :)
The statement which best describes how light waves travel in an uniform medium is in straight lines. The correct answer will be A.
Hi there!
We can use Newton's Second Law:

ΣF = Net force (N)
m = mass (kg)
a = acceleration (m/s²)
We can rearrange the equation to solve for the acceleration.
