Electromagnetic wave bc I studied that early in the year
<u>Voltage:</u>
It is basically the difference between the charges of the materials on the ends of the Wire
<em>also known as potential difference</em>
It is very similar to the movement of air, it moves from higher density to lower density. in this case, the change in density is the potential difference
So, since voltage is the difference between the charge available on the ends of a wire. Even if the wire splits in parallel circuit, the difference of the charges remains the same
<em>the more the potential difference, the faster electrons will move to the material with lower charge</em>
<u>Current:</u>
Current is the amount of electrons moving through a cross-section of a wire in a period of time
So basically, it is the amount of electrons that move across a given point on a wire in a period of time
If the wire splits, we will have the same amount of electrons moving through as they would if the wire was not split but now, the electrons passing are divided and hence, if we measure the current after the split, we will find that we have a lower current
that's because we have less charge moving through the cross-section of the wire since some of those electrons are moving through a different wire
That's why the current splits in a parallel circuit
<span>When a red giang complete helium fusion and collapses, it becomes a white dwarf. The correct option is C. White dwarf are very dense stars that are usually the size of a planet. It is a stellar core reminant which mainly made up of electron degenerated matters; its mass is comparable to that of the sun while its volume is comparable to that of the earth. </span>
Explanation:
During your menstrual cycle , Harmones make the eggs in your Ovaries mature -
• when an egg is mature , That means it's ready to be fertilized by a sperm cell .
• These hormones also make the lining of your uterus thick and spongy . So if your egg does get Fertilised , It has a nice cushy place to land and start a pregnancy .
<h3>Hope this helps </h3>
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4