Dont click on the link its a scam btw
Answer:
magnification = - 30
overall magnification = -240
Explanation:
given data
Focal length of microscope objective f = 0.150 cm
Object distance from microscope objective do = 0.155 cm
magnification by eyepiece = 8 ×
to find out
What magnification is produced and overall magnification
solution
we consider here Image distance from microscope objective is = di
so that
Magnification produced by objective will be = - 
so we find here di by given equation that is
..................1
di = 4.65 cm
so that magnification by object will be
magnification = - 
magnification = - 
magnification = - 30
and
overall magnification will be
overall magnification = magnification by objective × magnification by eyepiece ........................2
overall magnification = -30 × 8
overall magnification = -240
Answer:
4 kg → +4 m/s
5 kg → -5 m/s
Explanation:
The law of conservation of momentum states that:
- m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
- left side → velocities before collision
- right side → velocities after collision
You'll notice that we have two missing variables: v₁' & v₂'. Assuming this is a perfectly elastic collision, we can use the conservation of kinetic energy to set the initial and final velocities of the individual bodies equal to each other.
Let's substitute all known variables into the first equation.
- (4)(-6) + (5)(3) = (4)v₁' + (5)v₂'
- -24 + 15 = 4v₁' + 5v₂'
- -9 = 4v₁' + 5v₂'
Let's substitute the known variables into the second equation.
- (-6) + v₁' = (3) + v₂'
- -9 = -v₁' + v₂'
- 9 = v₁' - v₂'
Now we have a system of equations where we can solve for v₁ and v₂.
- -9 = 4v₁' + 5v₂'
- 9 = v₁' - v₂'
Use the elimination method and multiply the bottom equation by -4.
- -9 = 4v₁' + 5v₂'
- -36 = -4v₁' + 4v₂'
Add the equations together.
<u>The final velocity of the second body (5 kg) is -5 m/s</u>. Substitute this value into one of the equations in the system to find v₁.
- 9 = v₁' - v₂'
- 9 = v₁' - (-5)
- 9 = v₁' + 5
- 4 = v₁'
<u>The final velocity of the first body (4 kg) is 4 m/s.</u>
<u></u>
We can verify our answer by making sure that the law of conservation of momentum is followed.
- m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
- (4)(-6) + (5)(3) = (4)(4) + (5)(-5)
- -24 + 15 = 16 - 25
- -9 = -9
The combined momentum of the bodies before the collision is equal to the combined momentum of the bodies after the collision. [✓]