17
What would the scale read? zero
18 In free fall you are being pulled by a gravity. "Truly" weightless presumably happens in deep space where there is nothing to pull you.
19 coasters accelerate down to simulate weight loss/zeroised. As do NASA planes,
Roller coasters are for fun seekers. NASA is for science
The sun orbits the eth at 2kilogram per sec
The acceleration due to gravity of Mars is 
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,

Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.




Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s