Answer:
The radius of the loop is 20.66 km
Explanation:
let the radius of the loop be r
mass of airplane is m
At the top, the pilot experiences two radial forces, which are
1) Gravitational force is mg
2) Centrifugal forces mv²/r out of the center
When the pilot experiences no weight,
then, mg = mv²/r
r = v² / g
= 450² / 9.8
= 20.66 x 10³3
= 20.66 km
The time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
<h3>Time of travel of the P-wave</h3>
In rock, S waves generally travel about 60% the speed of P waves, and the S wave always arrives after the P wave.
<h3>Relationship between speed and time</h3>
v ∝ 1/t
v₁t₁ = v₂t₂
t₁/t₂ = v₂/v₁
t₁/t₂ = 0.6v₁/v₁
t₁/t₂ = 0.6
t₁ = 0.6t₂
t₁ = 0.6 x 22 mins
t₁ = 13.2 mins
Thus, the time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
Learn more about P-waves here: brainly.com/question/2552909
#SPJ1
Answer:
1.8 m/s
Explanation:
momentum = mass × velocity
initial momentum = m1v1+m2v2
= 3×3 +2×0 = 9+0= 9 kg m/s
let combined velocity be V
HENCE
final momentum = total mass × velocity
= (3+2) × V = 5V
According to law of conservation of momentum
final momentum = initial momentum
5V = 9
V =9/5
V = 1.8 m/s
He thought that behavior is determined by its consequences.