The answer is D because it’s going by the miles
Answer:
a)
, b) 
Explanation:
a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:




b) The speed of the block is determined by using the Principle of Energy Conservation:




The radius of the circular loop is:



Answer:
The potential energy (P.E) at the top is 392 J
The kinetic energy (K.E) at the top is 0 J
The potential energy (P.E) at the halfway point is 196 J.
The kinetic energy (K.E) at the halfway point is 196 J.
Explanation:
Given;
mass of the rock, m = 2 kg
height of the cliff, h = 20 m
speed of the rock at the halfway point, v = 14 m/s
The potential energy (P.E) and kinetic energy (K.E) when its at the top;
P.E = mgh
P.E = (2)(9.8)(20)
P.E= 392 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the top of the cliff = 0
K.E = ¹/₂(2)(0)²
K.E = 0
The potential energy (P.E) and kinetic energy (K.E) at the halfway point;
P.E = mg(¹/₂h)
P.E = (2)(9.8)(¹/₂ x 20)
P.E = 196 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the halfway point = 14 m/s
K.E = ¹/₂(2)(14)²
K.E = 196 J.
Answer:
F = 36 kN
Explanation:
It is given that,
The pressure on the base of the fish tank is 4000N/m².
The base of the tank is a rectangle measuring 2.0m by 4.5m.
Area of the base of the tank is 9 m²
We need to find the force on the base caused by the base of the water. Pressure on the base of the tank is given by the force acting per unit area such that,

So, the force of 36 kN is acting on the base by the base of water.