![\boxed{x_{1}=-15} \\ \\ \boxed{x_{2}=-17}](https://tex.z-dn.net/?f=%5Cboxed%7Bx_%7B1%7D%3D-15%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7Bx_%7B2%7D%3D-17%7D)
<h2>
Explanation:</h2>
In this case, we have the following equation:
![x^2+32x+256=1](https://tex.z-dn.net/?f=x%5E2%2B32x%2B256%3D1)
But we can write this equation as:
![x^2+32x+256=1 \\ \\ Subtract \ -1 \ from\ both \ sides: \\ \\ x^2+32x+256-1=1-1 \\ \\ x^2+32x+255=0](https://tex.z-dn.net/?f=x%5E2%2B32x%2B256%3D1%20%5C%5C%20%5C%5C%20Subtract%20%5C%20-1%20%5C%20from%5C%20both%20%5C%20sides%3A%20%5C%5C%20%5C%5C%20x%5E2%2B32x%2B256-1%3D1-1%20%5C%5C%20%5C%5C%20x%5E2%2B32x%2B255%3D0)
So this final result is a quadratic equation written in Standard Form (
). We need to find the solutions to this equations, so let's use quadratic formula:
![x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ a=1 \\ b=32 \\ c=255 \\ \\ \\ x=\frac{-32 \pm \sqrt{(32)^2-4(1)(255)}}{2(1)} \\ \\ x=\frac{-32 \pm \sqrt{1024-1020}}{2} \\ \\ x=\frac{-32 \pm \sqrt{4}}{2} \\ \\ x=\frac{-32 \pm 2}{2} \\ \\ Finally, \ two \ solutions: \\ \\ \boxed{x_{1}=-15} \\ \\ \boxed{x_{2}=-17}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20%5C%5C%20a%3D1%20%5C%5C%20b%3D32%20%5C%5C%20c%3D255%20%5C%5C%20%5C%5C%20%5C%5C%20x%3D%5Cfrac%7B-32%20%5Cpm%20%5Csqrt%7B%2832%29%5E2-4%281%29%28255%29%7D%7D%7B2%281%29%7D%20%5C%5C%20%5C%5C%20x%3D%5Cfrac%7B-32%20%5Cpm%20%5Csqrt%7B1024-1020%7D%7D%7B2%7D%20%5C%5C%20%5C%5C%20x%3D%5Cfrac%7B-32%20%5Cpm%20%5Csqrt%7B4%7D%7D%7B2%7D%20%5C%5C%20%5C%5C%20x%3D%5Cfrac%7B-32%20%5Cpm%202%7D%7B2%7D%20%5C%5C%20%5C%5C%20Finally%2C%20%5C%20two%20%5C%20solutions%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bx_%7B1%7D%3D-15%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7Bx_%7B2%7D%3D-17%7D)
<h2>Learn more:</h2>
Quadratic Equations: brainly.com/question/10278062
#LearnWithBrainly
Answer:
y + 3 = 1/2(x + 3)
Step-by-step explanation:
Point Slope Form: y - y1(y coordinate) = m(slope)(x - x1(x coordinate))
Answer:
The answers to the question above are given below:
Step-by-step explanation:
Question: What is a discrete probability distribution?
<u>Answer</u>
A discrete distribution is very important in data research as it shows in tabular form the probabilities that can be found in a list of distribution values and their individual probabilities in counted data. Usually, from the pool of distribution of numbers, the discrete distribution shows the probability of having countable numbers out of the pool.
<u>Question:</u> Choose the correct answer below. A. A discrete probability distribution exclusively lists probabilities. B. A discrete probability distribution lists each possible value a random variable can assume, together with its probability. C. A discrete probability distribution lists each possible value a random variable can assume. D. None of the above
The correct answer is: option B "discrete probability distribution lists each possible value a random variable can assume, together with its probability."
Question: What are the two conditions that determine a probability distribution?
<u>The correct answer is</u>:
1. Since each value may not be zero, each probability must include between 0 and 1.
2. When probabilities are totaled, it must give 1.
P=2L+2W
380=2*70+2W
380=140+2W
2W=240
W=120
The dimensions are 70 yd and 120 yd
Hope this helps!
77 green marbles
try googling the rest or 33/77=77%