B. The presence of unconformities
Answer:
CaCO3 (s) → CaO (s) + CO2 (g)
The mass of carbonate that must have reacted was 43.03 grams
Explanation:
CaCO3 → CaO + CO2
Relation between reactant and product is 1:1
Let's apply the Ideal Gas Law to find out the moles of CO2 which were produced.
P . V = n . R . T
1 atm . 23 L = n . 0.082 L.atm/mol.K . 653K
(1atm . 23L) / (0.082 mol.K/L.atm . 653K) = n
0.43 moles = n
0.43 moles of CO2, were produced from 0.43 moles of CaCO3.
Molar weight of CaCO3 = 100.08 g/m
Mass = Molar weight . moles
Mass = 100.08 g/m 0.43 m = 43.03 g
I think the correct answer is potential energy since an object at rest store energy as a result of its position and is called us such. For instance, a book placed in a table is storing energy as it held at an elevated position.
Matter.
A force of attraction that holds atom together
<span>When atoms react they form a chemical bond which is defined as a force of attraction that holds atom together. A force of attraction is defined as a kind of force that draws two or more objects together regardless of distance. There are two major categories of forces of attraction, one is intramolecular and intermolecular. Intramolecular forces is the presence of forces in atoms internally. While intermolecular is the force by which the force that is existent in two or more elements. </span>