Answer:
The answer to your question is 25.2 g of acetic acid.
Explanation:
Data
[Acetic acid] = 0.839 M
Volume = 0.5 L
Molecular weight = 60.05 g/mol
Process
1.- Calculate the number of moles of acetic acid
Molarity = moles / volume
-Solve for moles
moles = Molarity x volume
-Substitution
moles = (0.839)(0.5)
-Result
moles = 0.4195
2.- Calculate the mass of acetic acid using proportions and cross multiplications
60.05 g ----------------------- 1 mol
x ----------------------- 0.4195 moles
x = (0.4195 x 60.05) / 1
x = 25.19 g
3.- Conclusion
25.2 g are needed to prepare 0.500 L of Acetic acid 0.839M
Missing question: Z:X = 7:1 A:Z = 2.5:1 A:Z = 2.2:1 Y:X = 11:1.
Answer is:<span> Z:X = 7:1 and Y:X = 11:1.
Law of multiple proportions or Dalton's Law
said that the ratios of the masses of the second element which
combine with a fixed mass of the first element will be ratios of small whole
numbers.
In this example ratios are whole numbers, A:Z = 2.5 : 1
and A:Z = 2.2 : 1 are not whole number ratios.</span>
The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection.
Answer:
Approximately 75%.
Explanation:
Look up the relative atomic mass of Ca on a modern periodic table:
There are one mole of Ca atoms in each mole of CaCO₃ formula unit.
- The mass of one mole of CaCO₃ is the same as the molar mass of this compound:
. - The mass of one mole of Ca atoms is (numerically) the same as the relative atomic mass of this element:
.
Calculate the mass ratio of Ca in a pure sample of CaCO₃:
.
Let the mass of the sample be 100 g. This sample of CaCO₃ contains 30% Ca by mass. In that 100 grams of this sample, there would be
of Ca atoms. Assuming that the impurity does not contain any Ca. In other words, all these Ca atoms belong to CaCO₃. Apply the ratio
:
.
In other words, by these assumptions, 100 grams of this sample would contain 75 grams of CaCO₃. The percentage mass of CaCO₃ in this sample would thus be equal to:
.
Answer:
you gotta rotate it 90 degrees and get that screen fixed
Explanation: