Explanation:
Half life of zero order and second order depends on the initial concentration. But as the given reaction slows down as the reaction proceeds, therefore, it must be second order reaction. This is because rate of reaction does not depend upon the initial concentration of the reactant.
a. As it is a second order reaction, therefore, doubling reactant concentration, will increase the rate of reaction 4 times. Therefore, the statement a is wrong.
b. Expression for second order reaction is as follows:
![\frac{1}{[A]} =\frac{1}{[A]_0} +kt](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%5Cfrac%7B1%7D%7B%5BA%5D_0%7D%20%2Bkt)
the above equation can be written in the form of Y = mx + C
so, the plot between 1/[A] and t is linear. So the statement b is true.
c.
Expression for half life is as follows:
![t_{1/2}=\frac{1}{k[A]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BA%5D_0%7D)
As half-life is inversely proportional to initial concentration, therefore, increase in concentration will decrease the half life. Therefore statement c is wrong.
d.
Plot between A and t is exponential, therefore there is no constant slope. Therefore, the statement d is wrong
Answer:

Explanation:
Given that,
The wavelength of a microwave is 7.42 mm or 0.00742 m
No. of photons, n = 359
We need to find the energy produced by this no of photons. It can be given by the formula as follows :

or

So, the required energy is
.
Answer:
C
Explanation:ABC is being broken down into A, B, C
Answer:
B. Line 2 has a mistake
Explanation:
1. All electromagnetic waves are made of both electric and magnetic fields (hence the name electromagnetic).
2. All electromagnetic waves are transverse, and not longitudinal.
3. All electromagnetic waves can travel through space because they do not need particles to travel (like sound waves).
4. Electromagnetic waves all travel at the speed of light (299 792 458 m/s).
Answer:
B
Explanation:
The most stable carbonation with OH on the adjacent carbon