1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
14

Imagine an alternate universe where the value of the Planck constant is . In that universe, which of the following objects would

require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? A virus with a mass of 9.4 x 10-17 g, 280. nm wide, moving at 0.50 µm/s. classical quantum A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 37. m/s. classical quantum A mosquito with a mass of 1.0 mg, 6.3 mm long, moving at 1.1 m/s. classical quantum A turtle with a mass of 710. g, 22. cm long, moving at 2.8 cm/s. classical quantum
Physics
1 answer:
HACTEHA [7]3 years ago
8 0

Question: The planck constant was not given. In this calculation, planck constant of 6.62607*10^-9 Js  is used for the calculation.

Answer:

(a) A virus -------------Classical

(b) A buckyball -----Classical

(c) A mosquito ------ Quantum

(d) A turtle  ------------Quantum

Explanation:

 Calculating the wavelength using the formula;

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.62607*10^-9 Js

m = mass in kg

v = velocity in m/s

Virus size = 280. nm = 2.80*10⁻⁷ m

a)

A Virus:

m = 9.4 x 10-17 g 9.4*10⁻²⁰ kg

v = 0.50 µm/s = 5 *10⁻⁷ m/s

h = 6.62607*10^-9 Js

Virus size = 280 nm = 2.80*10⁻⁷ m

Substituting into the formula; we have

λ= h/(mv)

λ= 6.62607*10^-9/ (9.4*10⁻²⁰* 5 *10⁻⁷)

  = 6.62607*10^-9/4.7*10^-26

  = 1.4*10^17 m

Classical : Wavelength is bigger than it's size

(b)

A buckyball

m = 1.2 x 10-21 g = 1.2 *10⁻²⁴ kg

V = 37 m/s

Size = 0.7 nm = 7*10⁻¹⁰ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ ( 1.2 *10⁻²⁴* 37)

  =  6.62607*10^-9/4.44*10^-23

  = 1.49 *10^14 m

Classical : Wavelength is bigger than it's size

(c)

A mosquito

Mass = 1.0 mg = 1*10⁻⁶ kg

v = 1.1 m/s

Size =  6.3 mm = 6.3*10⁻³ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  1*10⁻⁶* 1.1)

  =  6.62607*10^-9/1.1*10^-6

  = 6.02*10^-3 m

Quantum Approach: The wavelength and the size are comparable

(d)

A turtle

Mass = 710. g = 0.71 kg

Size =  22. cm = 0.22 m

V =  2.8 cm/s. = 0.028 m/s

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  0.71* 0.028)

  = 6.62607*10^-9/0.01988

   = 3.33*10^-7 m

Quantum Approach: The wavelength and the size are comparable

You might be interested in
What energy transformation occurs during the combustion of coal in a power plant?
inn [45]
Hello there, the correct answer is:

B.
4 0
3 years ago
Read 2 more answers
Which of these is a characteristic of the Milky Way galaxy
IRINA_888 [86]

Answer:

A

Explanation:

3 0
2 years ago
The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, in
bezimeni [28]

1) Potential difference: 1 V

2) V_b-V_a = -1 V

Explanation:

1)

When a charge moves in an electric field, its electric potential energy is entirely converted into kinetic energy; this change in electric potential energy is given by

\Delta U=q\Delta V

where

q is the charge's magnitude

\Delta V is the potential difference between the initial and final position

In this problem, we have:

q=4.80\cdot 10^{-19}Cis the magnitude of the charge

\Delta U = 4.80\cdot 10^{-19}J is the change in kinetic energy of the particle

Therefore, the potential difference (in magnitude) is

\Delta V=\frac{\Delta U}{q}=\frac{4.80\cdot 10^{-19}}{4.80\cdot 10^{-19}}=1 V

2)

Here we have to evaluate the direction of motion of the particle.

We have the following informations:

- The electric potential increases in the +x direction

- The particle is positively charged and moves from point a to b

Since the particle is positively charged, it means that it is moving from higher potential to lower potential (because a positive charge follows the direction of the electric field, so it moves away from the source of the field)

This means that the final position b of the charge is at lower potential than the initial position a; therefore, the potential difference must be negative:

V_b-V_a = - 1V

8 0
2 years ago
1) Name one thing that can cause global warming
max2010maxim [7]
Air pollution!! Can I have brainlyist:))
6 0
2 years ago
A force of 20N changes the position of a body. If mass of the body is 2kg, find the acceleration produced in the body.2. A ball
shepuryov [24]

Explanation:

<em>Hello</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em>

<em>You</em><em> </em><em>just</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>use</em><em> </em><em>simple</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>force</em><em> </em><em>and</em><em> </em><em>momentum</em><em>, </em>

<em>F</em><em>=</em><em> </em><em>m.a</em>

<em>and</em><em> </em><em>momentum</em><em> </em><em>(</em><em>p</em><em>)</em><em>=</em><em> </em><em>m.v</em>

<em>where</em><em> </em><em>m</em><em>=</em><em> </em><em>mass</em>

<em>v</em><em>=</em><em> </em><em>velocity</em><em>.</em>

<em>a</em><em>=</em><em> </em><em>acceleration</em><em> </em><em>.</em>

<em>And</em><em> </em><em>the</em><em> </em><em>solutions</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>pictures</em><em>. </em>

<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
3 years ago
Other questions:
  • Spot welding is used to fuse two sheets of metal together at one small spot. Two copper electrodes pinch the sheets together at
    9·1 answer
  • What is the distance between two spheres, each with a charge of 2.5 x 10-6 c, when the force between them is 0.50 n?
    14·1 answer
  • If a ray of light is incident on plane mirror at an angle of 300 its angle of reflection is.​
    9·1 answer
  • Two very quick questions!!
    12·2 answers
  • A certain bridge is 4,224 feet long. What constant rate, in miles per hour, must be maintained in order to walk across the bridg
    14·1 answer
  • Which of the following is true
    14·2 answers
  • Tidal power can be generated by man without investing a lot of energy into the process. True False
    12·2 answers
  • PLZ HELP ME
    11·2 answers
  • How are mass and weight different
    14·2 answers
  • What’s the first step you would take to build a voltaic cell?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!