1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
14

Imagine an alternate universe where the value of the Planck constant is . In that universe, which of the following objects would

require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? A virus with a mass of 9.4 x 10-17 g, 280. nm wide, moving at 0.50 µm/s. classical quantum A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 37. m/s. classical quantum A mosquito with a mass of 1.0 mg, 6.3 mm long, moving at 1.1 m/s. classical quantum A turtle with a mass of 710. g, 22. cm long, moving at 2.8 cm/s. classical quantum
Physics
1 answer:
HACTEHA [7]3 years ago
8 0

Question: The planck constant was not given. In this calculation, planck constant of 6.62607*10^-9 Js  is used for the calculation.

Answer:

(a) A virus -------------Classical

(b) A buckyball -----Classical

(c) A mosquito ------ Quantum

(d) A turtle  ------------Quantum

Explanation:

 Calculating the wavelength using the formula;

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.62607*10^-9 Js

m = mass in kg

v = velocity in m/s

Virus size = 280. nm = 2.80*10⁻⁷ m

a)

A Virus:

m = 9.4 x 10-17 g 9.4*10⁻²⁰ kg

v = 0.50 µm/s = 5 *10⁻⁷ m/s

h = 6.62607*10^-9 Js

Virus size = 280 nm = 2.80*10⁻⁷ m

Substituting into the formula; we have

λ= h/(mv)

λ= 6.62607*10^-9/ (9.4*10⁻²⁰* 5 *10⁻⁷)

  = 6.62607*10^-9/4.7*10^-26

  = 1.4*10^17 m

Classical : Wavelength is bigger than it's size

(b)

A buckyball

m = 1.2 x 10-21 g = 1.2 *10⁻²⁴ kg

V = 37 m/s

Size = 0.7 nm = 7*10⁻¹⁰ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ ( 1.2 *10⁻²⁴* 37)

  =  6.62607*10^-9/4.44*10^-23

  = 1.49 *10^14 m

Classical : Wavelength is bigger than it's size

(c)

A mosquito

Mass = 1.0 mg = 1*10⁻⁶ kg

v = 1.1 m/s

Size =  6.3 mm = 6.3*10⁻³ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  1*10⁻⁶* 1.1)

  =  6.62607*10^-9/1.1*10^-6

  = 6.02*10^-3 m

Quantum Approach: The wavelength and the size are comparable

(d)

A turtle

Mass = 710. g = 0.71 kg

Size =  22. cm = 0.22 m

V =  2.8 cm/s. = 0.028 m/s

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  0.71* 0.028)

  = 6.62607*10^-9/0.01988

   = 3.33*10^-7 m

Quantum Approach: The wavelength and the size are comparable

You might be interested in
The linear momentum of a truck of mass 5000 kg that is moving at a velocity of +30 m/a is ___ kg m/s
miv72 [106K]

Linear momentum of a truck is 1,50,000 kg.m/s

Explanation:

Linear momentum is the product of the mass and velocity of an object. It is a vector quantity, which have a magnitude and a direction.

Linear momentum is a property of an object which is in motion with respect to a reference point (i.e. any object changing its position with respect to the reference point).

It's SI units are kg.m/s

Linear momentum is a vector quantity.

Linear momentum formula (p) = mass × velocity

Given data mass = 5000 kg ; velocity = 30 m/s

P = 5000 × 30

Linear momentum p= 1,50,000 kg.m/s

7 0
3 years ago
An object of mass m swings in a horizontal circle on a string of length L that tilts downward at angle θ. Find an expression for
VikaD [51]
We know that
g = LcosΘ 
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
8 0
3 years ago
Read 2 more answers
A 1900 kg car rounds a curve of 55 m banked at an angle of 11 degrees? . If the car is traveling at 98 km/h, How much friction f
Nat2105 [25]

Answer:

22000 N

Explanation:

Convert velocity to SI units:

98 km/h × (1000 m / km) × (1 h / 3600 s) = 27.2 m/s

Draw a free body diagram.  There are three forces acting on the car.  Normal force perpendicular to the bank, gravity downwards, and friction parallel to the bank.

I'm going to assume the friction force is pointed down the bank.  If I get a negative answer, that'll just mean it's actually pointed up the bank.

Sum of the forces in the radial direction (+x):

∑F = ma

N sin θ + F cos θ = m v² / r

Sum of the forces in the y direction:

∑F = ma

N cos θ - F sin θ - W = 0

To solve the system of equations for F, first solve for N and substitute.

N = (W + F sin θ) / cos θ

Substituting:

((W + F sin θ) / cos θ) sin θ + F cos θ = m v² / r

(W + F sin θ) tan θ + F cos θ = m v² / r

W tan θ + F sin θ tan θ + F cos θ = m v² / r

W tan θ + F (sin θ tan θ + cos θ) = m v² / r

W tan θ + F sec θ = m v² / r

F sec θ = m v² / r - W tan θ

F = m v² cos θ / r - W sin θ

F = m (v² cos θ / r - g sin θ)

Given that m = 1900 kg, θ = 11°, v = 27.2 m/s, and r = 55 m:

F = 1900 ((27.2)² cos 11 / 55 - 9.8 sin 11)

F = 21577 N

Rounding to two sig-figs, you need at least 22000 N of friction force.

4 0
2 years ago
1. Which type of wire would be a better conductor of an electrical current?
Lelechka [254]

Answer:

1. a

2. b

3. b

Explanation:

1.

Resistance is the property of a conductor to offer resistance to the flow of current. The lower the resistance better is  the conductivity of wire.

We know that the resistance of a wire depends on several factor which are inter-connected by an equation as:

R=\rho.\frac{l}{a}

where:

R = resistance of the wire

l = length of the wire

a= cross sectional area of the wire  

from the above relation we observe that

R\propto l

R\propto \frac{1}{a}

  • Also when the temperature of the wire is significantly high then the lattice vibration cause obstruction in the path of the flowing charges and reduce the current flow.

2.

As the collision between the electrons and protons increases the speed of the flow of charges will decrease because the opposite charges attract each other and as we know that electrical current is the rate of flow of charge.

3.

Heating up of wire due to sunlight will cause lattice vibration in the conductor and will obstruct the movement of the charges which build up electric current, hence increasing the resistance of conductivity.

7 0
2 years ago
What would be the escape speed for a craft launched from a space elevator at a height of 54,000 km?
Natasha_Volkova [10]

Answer: 3.63 km/s

Explanation:

The escape velocity equation for a craft launched from the Earth surface is:

V_{e}=\sqrt{\frac{2GM}{R}}

Where:

V_{e} is the escape velocity

G=6.67(10)^{-11} Nm^{2}/kg^{2} is the Universal Gravitational constant

M=5.976(10)^{24}kg is the mass of the Earth

R=6371 km=6371000 m is the Earth's radius

However, in this situation the craft would be launched at a height h=54000 km=54000000 m over the Eart's surface with a space elevator. Hence, we have to add this height to the equation:

V_{e}=\sqrt{\frac{2GM}{R+h}}

V_{e}=\sqrt{\frac{2(6.67(10)^{-11} Nm^{2}/kg^{2})(5.976(10)^{24}kg)}{6371000 m+54000000 m}}

Finally:

V_{e}=3633.86 m/s \approx 3.63 km/s

7 0
3 years ago
Other questions:
  • Which of the following athletes did not have an eating disorder?
    10·1 answer
  • What is the density of the baseball?
    10·2 answers
  • An object is accelerating if it is moving____. circle all that apply. ​
    10·1 answer
  • How does the vacuum between the inner and outer walls of a thermos bottle limit energy loss through conduction and convection?
    11·1 answer
  • With a diameter that's 11 times larger than Earth's, _______ is the largest planet.
    12·2 answers
  • A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
    12·1 answer
  • Please help with this conversion question about heat!<br> WILL MARK BRAINLIEST!!!
    13·2 answers
  • Electromagnetic induction
    14·2 answers
  • A block with a mass of 6.0 kg is
    12·1 answer
  • Which of the following is the most appropriate description of an electric current?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!