Answer:
39.17% probability that a woman in her 60s who has a positive test actually has breast cancer
Step-by-step explanation:
Bayes Theorem:
Two events, A and B.

In which P(B|A) is the probability of B happening when A has happened and P(A|B) is the probability of A happening when B has happened.
In this question:
Event A: Positive test.
Event B: Having breast cancer.
3.65% of women in their 60s get breast cancer
This means that 
A mammogram can typically identify correctly 85% of cancer cases
This means that 
Probability of a positive test.
85% of 3.65% and 100-95 = 5% of 100-3.65 = 96.35%. So

What is the probability that a woman in her 60s who has a positive test actually has breast cancer?

39.17% probability that a woman in her 60s who has a positive test actually has breast cancer
Hi there,
This is the original inequality equation:

So, we first need to find the critical points of equality, and we can do that by switching the less than sign to an equal sign.

Now, we multiply both sides by x + 1:

Then, we multiply both sides by x - 1:

Next, we subtract x² from both sides:

After that, we solve for x. We do this by adding -x to both sides and dividing by 2. Doing so gives us x = 0, which is our first critical point. We need to find a few more critical points by testing x = -1 and x = 1. Here is how we do that:
<span>x = <span>−1 </span></span>(Makes left denominator equal to 0)<span>x = 1 </span>(Makes right denominator equal to 0)Check intervals in between critical points. (Test values in the intervals to see if they work.)<span>x <<span>−1 </span></span>(Doesn't work in original inequality)<span><span><span>−1 </span>< x </span><0 </span>(Works in original inequality)<span><span>0 < x </span>< 1 </span>(Doesn't work in original inequality)<span>x > 1 </span><span>(Works in original inequality)
Therefore, the answer to your query is
-1 < x < 0 or x > 1. Hope this helps and have a phenomenal day!</span>
The parametric equations for x and y describe a circle of radius 10 m, so the length of the base of the fence is the length of the circumference of a circle of radius 10 m. The formula for that circumference (C) is ...
... C = 2πr
... C = 2π·(10 m) = 20π m
The height as a function of angle (t) is found by substituting for x and y.
... h(t) = h(x(t), y(t)) = 4 + 0.01·((10cos(t))²-)10sin(t))²) = 4+cos(2t)
The average value of this over the range 0 ≤ t ≤ 2π is 4, since the cosine function has two full cycles in that range, and its average value over a cycle is zero.
Thus, the area of one side of the fence is that of a rectangle 20π m long and 4 m wide. That will be
... (20π m)·(4 m) = 80π m²
The amount of paint required to cover both sides of the fence is
... 2×(80π m²)×(1 L)/(10 m²) = 16π L ≈ 50.3 L
_____
You can work out the integral for area as a function of t. When you do, you will find it gives this same result.
Answer:
Step-by-step explanation:
i think the answer is x but ignore this
Answer:
Step-by-step explanation:
move constant to the right and change the sign
X=12-8
X=4