Answer:
n=2.32
w= -213.9 KW
Explanation:


Mass of air=1 kg
For polytropic process
,n is the polytropic constant.



n=2.32
Work in polytropic process given as
w=
w=
Now by putting the values
w=
w= -213.9 KW
Negative sign indicates that work is given to the system or work is done on the system.
For T_V diagram
We can easily observe that when piston cylinder reach on new position then volume reduces and temperature increases,so we can say that this is compression process.
Answer:Oxygen,Carbon dioxide,Nitrogen
Explanation:
Answer:
i believe the answer is a but i could be wrong
Explanation:
i hope it helps
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em>
</em> therefore 
We have now that

multiplying through by T

multiplying through by 300
-
The temperature T= 648.07k