A 2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected to a supply line through a valve. Air is flo
wing in the supply line at 600 kPa and 22°C. The valve is opened, and air is allowed to enter the tank until the pressure in the tank reaches the line pressure, at which point the valve is closed. A thermometer placed in the tank indicates that the air temperature at the final state is 77°C. 1) Starting with the most general form of the appropriate mass balance equation, determine the mass of air that has entered the tank (4 points). 2) Starting with the most general form of the appropriate energy balance equation, determine the amount of heat transferred and whether it was heat transferred in or out (8 points). 3) List at least 3 assumptions needed to complete this problem (3 points).
First of all the initial or primary and final masses can be calculated with the use of the ideal gas relations.
The net It transfer is determined from the energy balance. The initial and final internal energies and the enthalpy of the air in the supply line are obtained from A-I] for the given temperatures.
kindly check the attached image below to see working.
Explanation:Technician A says that primary vibration is created by slight differences in the inertia of the pistons between top dead center and bottom dead center. Technician B says that secondary vibration is a strong low-frequency vibration caused by the movement of the piston traveling up and down the cylinder. Who is correct? O A. Neither Technician A nor B OB. Technician B O C. Both Technicians A and B D. Technician A
The turbocharger on a car applies a very similar principle to a piston engine. It uses the exhaust gas to drive a turbine. This spins an air compressor that pushes extra air (and oxygen) into the cylinders, allowing them to burn more fuel each second