Answer:
The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.
The cost associated with the heat loss through the windows for an 8-hour flight is:
For aerogel windows: $17.472 (most efficient)
For polycarbonate windows: $262.08
For soda-lime glass windows: $1,238.016 (least efficient)
Explanation:
To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

In this case:

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).
To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).
To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Answer:
c
because oil is preventing corrosion and rust
Answer:
4.8°C
Explanation:
The rate of heat transfer through the wall is given by:


Assumptions:
1) the system is at equilibrium
2) the heat transfer from foam side to interface and interface to block side is equal. There is no heat retention at any point
3) the external surface of the wall (concrete block side) is large enough that all heat is dissipated and there is no increase in temperature of the air on that side






temperature at the interface
Solving for
will give the temperature at the interface:





Answer:
Different types of equipment are required for proper conditioning of air because every air conditional space faces some geometrical and environmental issues or problems. There are some different types of equipment used for conditioning of air that are air system, water system and air-water system. In many cases the air conditioning of the system varies with size of the equipment.