Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
Answer:
Microlensing.
Explanation:
This techniques is called Microlensing.
Microlensing is a method of gravitational lensing where light from a backdrop point of origin is curved to develop distorted, numerous and/or lightened images by the gravity field of a foreground lens.
This method is very effective in discovering planets that are far-far from earth.It is actually an astronomical effect that was predicted by Albert Einstein's general theory of relativity.
Answer:
A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.
- I'm reading this back and it doesn't make much sense, if you want me to reword this I can
Answer:
123 J transfer into the gas
Explanation:
Here we know that 123 J work is done by the gas on its surrounding
So here gas is doing work against external forces
Now for cyclic process we know that

so from 1st law of thermodynamics we have


so work done is same as the heat supplied to the system
So correct answer is
123 J transfer into the gas
The new magnitude of the force of attraction will be 6 times the original force of attraction
<h3>How to determine the initial force </h3>
- Mass 1 = m₁
- Mass 2 = m₂
- Gravitational constant = G
- Distance apart = r
- Initial force (F₁) = ?
F = Gm₁m₂ / r²
F₁ = Gm₁m₂ / r²
<h3>How to determine the new force </h3>
- Mass 1 = 2m₁
- Mass 2 = 3m₂
- Gravitational constant = G
- Distance apart (r) = r
- New force (F₂) =?
F = Gm₁m₂ / r²
F₂ = G × 2m₁ × 3m₂ / r²
F₂ = 6Gm₁m₂ / r²
But
F₁ = Gm₁m₂ / r²
Therefore
F₂ = 6Gm₁m₂ / r²
F₂ = 6F₁
Thus, the new magnitude of the force of attraction will be 6 times the original force of attraction
Learn more about gravitational force:
brainly.com/question/21500344
#SPJ1