Answer:
B) Friction
Explanation:
Friction is a force that acts when an object is sliding along a surface. Microscopically, this force is due to the fact that the two surfaces are not perfectly smooth, but they have "imperfections" that cause a force that opposes the motion of the object.
For an object sliding on a flat surface, the force of friction has magnitude:

where
is the coefficient of kinetic friction
m is the mass of the object
g is the acceleration of gravity
The direction of the force of friction is always opposite to the direction of motion of the object.
In reality, friction also acts if the object is at rest and it is pushed by a force; in this case, we talk about static friction, and its magnitude is

where
is called coefficient of static friction, and it is generally larger than the coefficient of kinetic friction.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
Humans use water for many different things. We use water to stay hydrated. Our bodies need water to live. Back in the day people used water for transportation and trading. This was a way to become wealthy and exchange goods and ideas from one place to another. We also use water to clean ourselves off. If we don't we can become sick with illnesses that can harm our bodies.
Explanation:
Answer:
A fired bullet
Explanation:
A fired bullet is faster than the speed of sound
Answer:
There would be complete destructive interference.
Explanation:
This is because since the waves are completely out of phase, the phase difference is half wavelength, that is the phase angle is 180°. The vibrating sources are 180° out of phase with each other.
Since this is the case, the crest of the one source meets the trough of the other, this causes the resultant vibrational wave to cancel out, thus producing a destructive interference pattern.
Since the vibrating sources are completely out of phase, every point they meet is completely out of phase, so the resultant interference pattern would produce a complete destructive interference pattern of no wave.