Answer:
A, total.
<em>The </em><em>total</em><em> energy in a mechanical system is determined by adding the potential and kinetic enters together.</em>
<em />
<u><em>i hope this helped at all.</em></u>
<em />
If it starts from 0m/s...
s=?
u=0
a=-10
t=8
s=ut +1/2at^2
so s=(0×8)+ (0.5×-10×64)
s=0+(32×-10)
s=32×-10
s=-320metres
Answer:
0.5 m/s².
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
a = (v – u) / t
a = (10 – 0) / 20
a = 10/20
a = 0.5 m/s²
Therefore, the acceleration of the car is 0.5 m/s².
The line at the bottom of the picture ... probably the first line on a list of choices .. is the correct equation.