Answer:
The Answer is below!!
Explanation:
The larger the area of the parachute, the more air needs to be pushed out of the way, and so the slower it descends. the independent variable is the shape of the parachutes' canopies. The dependent variable is the drop speeds of the parachutes. How long does it take for the parachutes to reach the ground? Measure this using a stopwatch.
Hope I Helped!!
:)
Answer:
the time taken for the motion is 3.37 s
Explanation:
Given;
initial velocity of the skydiver, u = 0
final velocity of the skydiver, v = 33 m/s
The time taken for the motion is calculated as;
v = u + gt
33 = 0 + 9.8t
33 = 9.8t
t = 33 / 9.8
t = 3.37 s
Therefore, the time taken for the motion is 3.37 s
highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
I think its true i dont kno for sure