Answer:
For example, when a car travels at a constant speed, the driving force from the engine is balanced by resistive forces such as air resistance and friction in the car's moving parts. The resultant force on the car is zero.
Explanation:
hope this helps
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that the friction force on two boxes is given as



Now we know by Newton's II law

so we have




Part b)
For block B we know that net force on it will push it forward with same acceleration so we have




Part c)
If Alex push from other side then also the acceleration will be same
So for box B we can say that Net force is given as




Answer:
The strength of magnetic field is 0.2 Tesla.
Explanation:
Data from the question is
Length (L) of wire ; L=0.10 m
Current in wire ; I= 2.0 A
Force on wire ; F = 0.04 N
Angle = Right angle So, 

Now ,
We have to find the magnetic Field strength (B)
For this formula for Force on wire in magnetic field is

Further modified as

Now insert values in the formula


So, the strength of magnetic field is 0.2 Tesla.
Answer:
V = 2.8 m/s
Explanation:
It is given that,
Mass of falcon, 
Mass of dove, 
Initial velocity of falcon, 
Initial velocity of dove, 
When the falcon catches the dove, the momentum remains conserved. Using the formula for the conservation of momentum as :

V is the velocity after impact


V = 2.8 m/s
So, their velocity after the impact is 2.8 m/s. Hence, this is the required solution.