Answer:
so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Explanation:
As we know that the air friction or resistance due to air is neglected then we can use the equation of kinematics here

since we released it from rest so we have

so here we have

now if the distance is double then we have

now from above two equations we can say that

so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
The box stopped moving because there was a negative acceleration in the x direction caused by friction.
To find the average speed, simply divide the displacement by time: 10 / 2 = 5 m/s
The answer is Newton's 3rd Law. The reason why is because a force is a push or a pull that acts upon an object as a results of its interaction with another object. ... These two forces are called action and reaction forces and are the subject ofNewton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction.
Answer:
F = -4567.40 N
Explanation:
Given that,
The power developed by the engine, P = 196 hp
1 hp = 746 W
196 hp = 146157 W
Speed of the car, v = 32 m/s
Let F is the total friction force acting on the car. The product of force and velocity is called the power developed by the engine. It is given by :



F = -4567.40 N
So, the total frictional force acting on the car is 4567.40 N. Hence, this is the required solution.
Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1