Answer:
Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, and many others. That is your answer! Thanks! :)
Explanation:
Answer: The ionic formula of compound is
and the name is cobalt phosphide.
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here element Co is having an oxidation state of +3 called as
cation and phosphprous forms
anion with oxidation state of -3. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
The nomenclature of ionic compounds is given by:
1. Positive is written first followed by the oxidation state of metal in roman numerals in square brackets.
2. The negative ion is written next and a suffix is added at the end of the negative ion. The suffix written is '-ide'.
Thus the name of
is cobalt phosphide.
Answer: i think your answer is<u> The giant green anemones, the ochre sea stars, and the red octopuses</u> because an ecosystem means all the organisms and the physical environment with which they interact. If not then your other option would be <u>A a school of fluffy sculpins.</u>
Hope this helped you!
Answer:
1.8 x 1024 atoms in a mole of water.
Explanation:
Answer : The metal used was iron (the specific heat capacity is
).
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of unknown metal = ?
= specific heat of water = 
= mass of unknown metal = 150 g
= mass of water = 200 g
= final temperature of water = 
= initial temperature of unknown metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Form the value of specific heat of unknown metal, we conclude that the metal used in this was iron (Fe).
Therefore, the metal used was iron (the specific heat capacity is
).