Chemical Reactions and Moles of Reactants and Products
That is, it requires 2 moles of magnesium and 1 mole of oxygen to produce 2 moles of magnesium oxide. If only 1 mole of magnesium was present, it would require 1 ÷ 2 = ½ mole of oxygen gas to produce 2 ÷ 2 = 1 mole magnesium oxide.
Answer:
1x10^–9 M
Explanation:
From the question given,
Concentration of hydronium ion, [H3O+] = 1x10^-5 M.
Concentration of Hydroxide ion, [OH-] =..?
The concentration of the hydroxide ion, [OH-] can be obtained as follow:
[H3O+] x [OH-] = 1x10^–14
1x10^-5 M x [OH-] = 1x10^–14
Divide both side by 1x10^-5
[OH-] = 1x10^–14 / 1x10^-5
[OH-] = 1x10^–9 M
Answer:
Volume = 746 L
Explanation:
Given that:- Mass of copper(II) fluoride = 175 g
Molar mass of copper(II) fluoride = 101.543 g/mol
The formula for the calculation of moles is shown below:
Thus,

Also,
Considering:
So,,

Given, Molarity = 0.00231 M
So,

<u>Volume = 746 L</u>
Answer: Option (B) is the correct answer.
Explanation:
As the given reaction is as follows.
Equilibrium constant for this reaction will be as follows.
![K_{c} = \frac{[CO_{2}]}{[CO]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCO_%7B2%7D%5D%7D%7B%5BCO%5D%5E%7B2%7D%7D)
According to Le Chatelier's principle, when we increase the temperature then the equilibrium will shift towards the right hand side.
As a result, concentration of carbon dioxide will decrease whereas concentration of carbon monoxide will increase.
Thus, we can conclude that in the given reaction equilibrium constant for this reaction will decrease with increasing temperature.