The answers that are correct are a, b, and d
Answer:
A disproportionation reaction is when a multiatomic species whose pertinent element has a specific oxidation state gets oxidized and reduced in two separate half-reactions, yielding two other products containing the same pertinent element. A convenient example is Mn2O3 becoming Mn2+ and MnO2 .
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
"nonmetal, nonmetal"
Explanation:
Oxygen is a non metal and Nitrogen is a non metal. It is 8th element of the periodic table. It is located in period 2 and group 16.
Nitrogen lies at the group 15 of the periodic table. Its atomic no is 7. Its valency is 2.
Hence, the correct option is (c) "nonmetal, nonmetal".
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.