Answer:
THE MINIONSSSSSSS AYEEEEE
Explanation:
Answer:
C
Sign-Negative
Explanation:
We are given that
Electric field =
(Radially downward)
Acceleration=
(Upward)
Mass of charge=3 g=
kg
1kg=1000g
We have to find the magnitude and sign of charge would have to be placed on a penny .
By newton's second law


Substitute the values then we get

Substitute the values then we get




C
Sign of charge =Negative
Because electric force acting in opposite direction of electric field therefore,charge on penny will be negative.
All matter is made up of subatomic particles that contain atoms. This is false statement.
Everything in the universe is made of matter, and so, everything in the universe is made of atoms. An atom itself is made up of three tiny kinds of particles called subatomic particles: <u>protons, neutrons, and electrons</u>.
All matter is made up of substances called elements, which have specific chemical and physical properties and cannot be broken down into other substances through ordinary chemical reactions.
Matter is anything which have mass and occupy some volume.
On earth, solid, liquid, and gas are the most common states of matter. Not only is water the most common substance on earth, but it is also the only substance that commonly appears as a solid, a liquid, and a gas within the normal range of earth's temperatures.
Learn more about matter here:- brainly.com/question/16982523
#SPJ9
Angular acceleration = (change in angular speed) / (time for the change)
change in angular speed = (zero - 2,600 RPM) = -2,600 RPM
time for the change = 10 sec
Angular acceleration = -2600 RPM / 10 sec = -260 rev / min-sec
(-260 rev/min-sec) x (1 min / 60 sec) = <em>-(4 1/3) rev / sec²</em>
Since the acceleration is negative, the motor is slowing down.
You might call that a 'deceleration' of (4 1/3) rev/sec² .
The average speed is 1/2(2,600 + 0) = 1,300 rev/min = (21 2/3) rev/sec.
Number of revs = (average speed) x (time) = (21 2/3) x (10sec) = <em>(216 2/3) revs</em>
Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.