Elliptical orbit.<<<<<<<<<<
Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N
Answer:
5x10^-3
Explanation:
Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.
Hooke's Law can be represented as
<h3> F = kx, </h3>
<em>where F is the force </em>
<em> k is the spring constant</em>
<em> x is the extension of the material </em>
<em />
Plug values in the equation
Step 1 find the original extension
0.045 = (400)x
x = 1.125x 10^-4 m d
Step 2 find the new extension
0.045+2 = 400(x)
2.045 = 400x
x = 5.1125x10^-3
Step 3 subtract the new extension with original
Total extension of the spring = 5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3