Answer:
w= -27
Step-by-step explanation:
w/3 = -9
w = 3 * -9 = -27
<em><u>The solution is (4, 4)</u></em>
<em><u>Solution:</u></em>
<em><u>Given system of equations are:</u></em>

<em><u>Substitute eqn 2 in eqn 1</u></em>

Make the right side of equation 0

<em><u>Solve by quadratic equation</u></em>

<em><u>Substitute x = 4 in eqn 2</u></em>
y = 2(4) - 4
y = 8 - 4
y = 4
Thus solution is (4, 4)
Answer:
2x - 10
Step-by-step explanation:
2(x - 5)
distribute
2*x - 2*5
2x - 2*5
2x - 10
120 degrees or 0.67 radians
A is the correct answer 3 terms and a degree of 9:)