Answer:
Latitude :
runs: east to west
measures : distances north and south of the equator
Longitude :
runs : north to south
measures : the distance east or west of the Prime Meridian
Answer:
<em>Fx = 121.24lb</em>
<em>F = 140lb</em>
Explanation:
Since we are not given the angles subtended by the force, we can assume it to be 30 degrees.
The y component of the force expressed by the formula:
Fy = Fsintheta
Given the y-component of the force F to bee 70lb
70lb = Fsintheta
Get magnitude of the force
F = 70/sin theta
F = 70/sin 30
F = 70/0.5
F = 140lb
Get the x-component of the force
Fx = Fcos theta
Fx = 140cos 30
Fx = 140(0.8660)
Fx = 1,212.4lb
<em>Hence the x-component of the force sis 121.24lb</em>
<em></em>
<em>Note that the angle used was assumed. Other values can as well be used</em>
Answer:
a) 
b)
º
c) 
Explanation:
From the exercise we know that the collision between Daniel and Rebecca is elastic which means they do not stick together
So, If we analyze the collision we got

To simplify the problem, lets name D for Daniel and R for Rebecca
a) 
Since Daniel's initial velocity is 0



Now, lets analyze the movement in the vertical direction

Since 


Now, we can find the magnitude of Daniel's velocity after de collision

b) To know whats the direction of Daniel's velocity we need to solve the arctan of the angle
º
c) The change in the total kinetic energy is:
ΔK=
ΔK=![\frac{1}{2}[(45kg)(8m/s)^2+(70kg)(7.32m/s)^2-(45kg)(14m/s)^2]=-1094.62J](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%2845kg%29%288m%2Fs%29%5E2%2B%2870kg%29%287.32m%2Fs%29%5E2-%2845kg%29%2814m%2Fs%29%5E2%5D%3D-1094.62J)
That means that the kinetic energy decreases
Answer:
Explanation:
v² = u² + 2as
s = (v² - u²) / 2a
s = (29.88² - 6.73²) / (2(5.22))
s = 81.1802203065...
s = 81.18 m