<span>Refraction is where the direction of travel of sound waves is altered by passing through a material of much higher or lower density. Walls that allow sound through are one example, but answer B is more about walls bouncing sound back - that's an example of reflection. The most likely change of density is answer A, air with big temperature differences.</span>
Density can be calculated using the following rule:
density = mass / volume
Since the density is given as 8 gm/cm^3 and the mass is given as 600 grams, therefore, all we need to do is substitute in the equation to get the value of the volume as follows:
8 = 600 / volume
volume = 600 / 8 = 75 cm^3
Displacement is the area under the velocity/time graph. So for example this object's displacement in the first 3 seconds is (1/2)(3sec)(12.5 m/s)= 18.75m. (and then it starts backing up, displacement decreasing, after 3sec when velocity is negative).
But This object is never speeding up. Its velocity is smoothly decreasing at (25/6) m/s^2 (the slope of the graph). So the answer to the question is actually zero.
Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s