as it is given that it covers a total distance 1 * 10^2 m
total time taken by it = 13.6 s
now the average speed is given as ratio of total distance and total time



so the average speed will be 7.35 m/s
now if it starts from rest and achieve the final speed as 7.35 m/s
now we can use kinematics



so its acceleration will be 3.68 m/s^2
We are given with the following:
L = 25 cm
θx = <span>37.5</span>°<span>
</span>θy = 52.5°
vx = 6.8 m/s
B = 0.13i - 0.29j - 0.08k
And we are asked for the emf induced in the rod
E = B L v
Substitute the values for B and L into the equation. For v, use the given velocity along x and the angles to convert it to vector form. Then, solve for E.
Answer:
H / R = 2/3
Explanation:
Let's work this problem with the concepts of energy conservation. Let's start with point P, which we work as a particle.
Initial. Lowest point
Em₀ = K = 1/2 m v²
Final. In the sought height
= U = mg h
Energy is conserved
Em₀ =
½ m v² = m g h
v² = 2 gh
Now let's work with the tire that is a cylinder with the axis of rotation in its center of mass
Initial. Lower
Em₀ = K = ½ I w²
Final. Heights sought
Emf = U = m g R
Em₀ =
½ I w² = m g R
The moment of inertial of a cylinder is
I =
+ ½ m R²
I= ½
+ ½ m R²
Linear and rotational speed are related
v = w / R
w = v / R
We replace
½
w² + ½ m R² w² = m g R
moment of inertia of the center of mass
= ½ m R²
½ ½ m R² (v²/R²) + ½ m v² = m gR
m v² ( ¼ + ½ ) = m g R
v² = 4/3 g R
As they indicate that the linear velocity of the two points is equal, we equate the two equations
2 g H = 4/3 g R
H / R = 2/3
If I ask you to tell me the acceleration of gravity on Earth, you'll tell me a number. That acceleration of gravity is always that number, no matter WHEN you measure it. t doesn't change. So the graph of it is the number. The graph of a number is a horizontal line. Its equation is:
. Y = (the number) .
The correct choice is ' A ' .