Answer: a. Regularly, you rub your hands for warmth.
b. Some examples are friction from electricity going through a wire or friction from rubbing your hand together.
c. Without friction, we would fall every time we walked. Because there is friction, we can walk normally. Another example is a ball moving across the field. Without friction, the ball would not slow down.
Explanation:
Overall, friction is important to us because we depend on it.
ANY closed orbit exists because of the centripetal force of gravity.
Without the force of gravity, the satellite would simply sail away
in a straight line.
The orbit you're describing happens to be a circular orbit, but it
doesn't have to be circular.
Apply conservation of angular momentum:
L = Iw = const.
L = angular momentum, I = moment of inertia, w = angular velocity, L must stay constant.
L must stay the same before and after the professor brings the dumbbells closer to himself.
His initial angular velocity is 2π radians divided by 2.0 seconds, or π rad/s. His initial moment of inertia is 3.0kg•m^2
His final moment of inertia is 2.2kg•m^2.
Calculate the initial angular velocity:
L = 3.0π
Final angular velocity:
L = 2.2w
Set the initial and final angular momentum equal to each other and solve for the final angular velocity w:
3.0π = 2.2w
w = 1.4π rad/s
The rotational energy is given by:
KE = 0.5Iw^2
Initial rotational energy:
KE = 0.5(3.0)(π)^2 = 14.8J
Final rotational energy:
KE = 0.5(2.2)(1.4)^2 = 21.3J
There is an increase in rotational energy. Where did this energy come from? It came from changing the moment of inertia. The professor had to exert a radially inward force to pull in the dumbbells, doing work that increases his rotational energy.
Answer:
24 kgm/s
Explanation:
Momentum (p) = mass x velocity
Mass = 3kg , velocity 8m/s
momentum (p) = 3kg x 8m/s
= 24kgm/s