Answer:
Electrical energy. Jump to navigation Jump to search. Electrical energy is energy derived from electric potential energy or kinetic energy. When used loosely, electrical energy refers to energy that has been converted from electric potential energy
Explanation:
Answer:
yes
Explanation:
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles.
I believe that the answer to the question asked above is the following
sound intensity = sound power / (4 pi R2<span>)
</span>
so if you decrease the intensity by a factor of 2 the sound wave will also decrease by a factor of 2.
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
F = 69.5 [N]
Explanation:
We must remember that the friction force is defined as the product of the normal force by the coefficient of friction, and it can be calculated by the following expression.

where:
N = normal force [N]
miu = friction coefficient
f = friction force = 22 [N]
Now we must calculate the force exerted by means of Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

where:
F = force exerted [N]
f = friction force [N]
m = mass = 95 [kg]
a = acceleration = 0.5 [m/s²]
Now replacing:
![F - 22 = 95*0.5\\F = 47.5 + 22\\F = 69.5 [N]](https://tex.z-dn.net/?f=F%20-%2022%20%3D%2095%2A0.5%5C%5CF%20%3D%2047.5%20%2B%2022%5C%5CF%20%3D%2069.5%20%5BN%5D)
Answer:
(a) 7.72×10⁵ J
(b) 4000 J
(c) 1.82×10⁻¹⁶ J
Explanation:
Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,
Ek = 1/2mv²................... Equation 1
Where Ek = Kinetic energy, m = mass, v = velocity
(a)
For a moving automobile,
Ek = 1/2mv².
Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s
Substitute into equation 1
Ek = 1/2(2.0×10³)(27.78²)
Ek = 7.72×10⁵ J
(b)
For a sprinting runner,
Given: m = 80 kg, v = 10 m/s
Substitute into equation 1 above,
Ek = 1/2(80)(10²)
Ek = 40(100)
Ek = 4000 J
(c)
For a moving electron,
Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s
Substitute into equation 1 above,
Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²
Ek = 1.82×10⁻¹⁶ J