(a) Let
be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

where
is the radius of the circle.
The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

so that

Solve for
:

(b) The net force equation in part (a) leads us to the relation

so that
is directly proportional to the square root of
. As the radius
increases, the maximum linear speed
will also increase, so the cord is less likely to break if we keep up the same speed.
A its Stratosphere, Sorry I didn't see your answer, its bilogy I think not physics.. :)
Answer
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Explanation:v
To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.