Answer:
The bell has a potential energy of 8550 [J]
Explanation:
Since the belt is 45 [m] above ground level, only potential energy is available. And this energy can be calculated by means of the following equation.
![E_{p}= W*h\\E_{p} = 190*45\\E_{p}=8550[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D%20W%2Ah%5C%5CE_%7Bp%7D%20%3D%20190%2A45%5C%5CE_%7Bp%7D%3D8550%5BJ%5D)
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
lentic zones because they do not move they are stagnant water examples are ponds, swap, dams.
Answer:
I = 1.38 A
Explanation:
Given that,
Charge, q = 5000 C
Time, t = 1 hour = 3600 s
We need to find the current intensity. The current intensity is equal to the electric charge per unit time. It can be given by :

Substitute all the values in the above formula

So, the current intensity is 1.38 A.