1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
11

The strength of an electric field depends on the

Physics
2 answers:
Maksim231197 [3]3 years ago
7 0
Electric field is directly proportional to the product of both the charges and inversely proportional to the square of distance between them. So, it depends on both, magnitude of charges, and the distance between them

In short, Your Answer would be Option D

Hope this helps!
Snowcat [4.5K]3 years ago
4 0

Answer: The correct answer is " amount of charge on a test charge placed in the field."

Explanation:

The expression of the electric field at a distance from the source charge is as follows;

E=\frac{kq}{r^{2} }

Here, q is the charge, E is the electric field, k is constant and r is the distance from the charge.

The electric field and the distance have an inverse relation. It varies inversely as the square of the distance. The electric field is directly proportional to the charge.

The strength of the electric field increases with decrease in the distance from the charge. From the given options, the options (a) and (b) are correct. The electric field depends on the distance from the charge and the amount of charge that produces the electric field.

Therefore, the correct option is (d).

You might be interested in
An automobile battery has an emf of 12.6 V and an internal resistance of 0.0600 . The headlights together present equivalent res
murzikaleks [220]

Answer:

(a) V=11.86\ V

(b) V=9.76\ V

Explanation:

<u>Electric Circuits</u>

Suppose we have a resistive-only electric circuit. The relation between the current I and the voltage V in a resistance R is given by the Ohm's law:

V=R.I

(a) The electromagnetic force of the battery is \varepsilon =12.6\ V and its internal resistance is R_i=0.06\ \Omega. Knowing the equivalent resistance of the headlights is R_e=5.2\ \Omega, we can compute the current of the circuit by using the Kirchhoffs Voltage Law or KVL:

\varepsilon=i.R_i+i.R_e=i.(R_i+R_e)

Solving for i

\displaystyle i=\frac{\varepsilon}{ R_i+R_e}=\frac{12}{0.06+5.2}=2.28\ A

i=2.28\ A

The potential difference across the headlight  bulbs is

V=\varepsilon  -i.R_i=12\ V-2.28\ A\cdot 0.06\ \Omega=11.86\ V

V=11.86\ V

(b) If the starter motor is operated, taking an additional 35 Amp from the battery, then the total load current is 2.28 A + 35 A = 37.28 A. Thus the output voltage of the battery, that is the voltage that the bulbs have is

V=\varepsilon  -i.R_i=12\ V-37.28\ A\cdot 0.06\ \Omega=9.76\ V

5 0
3 years ago
The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. Wha
Anna007 [38]

Answer:

The mass of the another block is 60 kg.

Explanation:

Given that,

Mass of block M= 100 kg

Height = 1.0 m

Time = 0.90 s

Let the mass of the other block is m.

We need to calculate the acceleration of each block

Using equation of motion

s=ut+\dfrac{1}{2}at^2

Put the value into the formula

1.0=0+\dfrac{1}{2}\times a\times(0.90)^2

a=\dfrac{2\times1.0}{(0.90)^2}

a=2.46\ m/s^2

We need to calculate the mass of the other block

Using newton's second law

The net force of the block M

Ma=Mg-T

T=Mg-Ma....(I)

The net force of the block m

ma=T-mg

Put the value of T from equation (I)

ma=Mg-Ma-mg

m(a+g)=M(g-a)

m=\dfrac{M(g-a)}{(a+g)}

Put the value into the formula

m=\dfrac{100(9.8-2.46)}{2.46+9.8}

m=59.8\ \approx60\ kg

Hence, The mass of the another block is 60 kg.

8 0
3 years ago
Which statement correctly compares ultraviolet light to visible light? Ultraviolet light has both a lower frequency and longer w
Effectus [21]

The correct statement is

Ultraviolet light has both a higher frequency and a higher radiant energy than visible light.

because ultraviolet light has wavelength smaller than the visible light hence has a greater frequency as compared to visible light. (frequency is inversely related to wavelength. hence smaller the wavelength , greater will be the frequency)

we also know that the radiant energy is directly proportional to the frequency. hence greater the frequency , greater will be the radiant energy.

Since the frequency is greater for ultraviolet light , it radiant energy is also greater


7 0
3 years ago
Read 2 more answers
A single loop of current is immersed in an externally applied uniform magnetic field of 3 Tesla oriented in the positive y direc
vlabodo [156]

Answer:

mu=12Tm^2

Explanation:

the magnetic moment mu of a single loop is given by:

\mu = I A B

where I is the current, B is the magnetic field and A is the area of the loop. By replacing we obtain:

\mu=(0.5A)(4m*2m)(3T)=12Tm^2

hope this helps!!

6 0
3 years ago
Consider the interactions involved when you use a TV remote control to change the channel. Classify each interaction as long ran
makvit [3.9K]

Explanation:

Following are two interactions that are generally involved when we use a TV remote control to change the channel :

1. Figure touches remote buttons, and its a short range interaction.

2. Now remote sends signal to Television, this is a long range interaction.

7 0
3 years ago
Other questions:
  • An organized plan for a gathering, organization, and communication information is called a(n) _____
    14·1 answer
  • Which term describes a substance that has a low melting point and poor electrical conductivity?
    6·1 answer
  • The Apollo 11 mission was the first mission to land a human on the moon.
    7·1 answer
  • If the energy in a wave increases or decreases what is going to increase or decrease
    9·1 answer
  • The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme a
    8·1 answer
  • Please round to three sig fig
    8·1 answer
  • If a melon has a a mass of 1 kg, how much does the melon weigh?
    14·1 answer
  • The rate of change of momentum of a body free falling under gravity is equal to its? A. Velocity B. kinetic energy C. power D. w
    15·2 answers
  • Which of the following is correct concerning the uncontrolled burn phase?
    12·1 answer
  • A specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state. T
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!