The electric field between plates is 4000V/m.
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles.
The value of the electric field has dimensions of force per unit charge. In the metre-kilogram-second and SI systems, the appropriate units are newtons per coulomb, equivalent to volts per metre.
The voltage between points A and B is
V=E.d
E =V/d (uniform E- field only)
where d is the distance from A to B, or the distance between the plates.
Given:
distance d = 3 cm
voltage V = 120 V
Electric field E = V/d
E = 120 V / 3cm
E = 40 V / 1 cm [ 1 cm = 1/100 m ]
E = 4000 V/m.
Learn more about Electric field here:
brainly.com/question/8971780
#SPJ4
Explanation: Ganymede, Callisto, Titan are the moons of outer planets or gaseous planets which are made up of ice and rock. Callisto is an ice-covered moon and has no inner or outer activity and is considered basically geologically dead. Ganymede has rocky core and shows signs of tectonic activity, including long cracks in the crust and regions of young surface terrain. Titan has active geology of liquid hydrocarbons on the surface, rain back onto the surface and evaporation into the atmosphere. It has similar size, composition and mass to Ganymede and Callisto.
Answer:
v = 12.12 m/s
Explanation:
Given that,
The mass of the cart, m = 75 kg
The roller coaster begins 15 m above the ground.
We need to find the velocity of the cart halfway to the ground. Let the velocity be v. Using the conservation of energy at this position, h = 15/2 = 7.5 m
So, the velocity of the cart is 12.12 m/s.
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.
- To find the answer, we have to find the tension,
- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,
Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1
Answer:
- I have fond the answer
Explanation:
but my camera doesn't work