Answer: 1037 miles per hour
Explanation: In order to see the sun in the same position in the sky, you would have to travel against the speed of rotation of the earth, because this is what causes the sun to appear in a constantly changing position.
Because of this, we will have to calculate the speed of rotation of the earth. To get started, we must know the circumference of the earth. Assuming the circumference formula for a sphere,

Where R is the radius of the earth, we find that the perimeter of the earth is approximately 24881 miles. The equation to calculate speed is given by

Because the earth completes one rotation in 24 hours, we have to find the speed of rotation as the perimeter of the earth divided by 24 hours.
The obtained result is 1037 miles per hour.
You would have to travel at 1037 miles per hour in the direction opposite to the direction the rotation is ocurring in.
<span>Greek philosophers had a basic approach to studying the world. They like to question the world and incite debates but they never really bothered to gather any real information, just discussions. Due to this, many ideas about matters were put out to be discussed, but they were never resolved.</span>
KE = 1/2 mv^2 is the relationship betwee mass and kinetic energy
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
I) 420000J
ii)
Explanation:
(I) so you can use the formula for quantity of heat then substitute the values given
formula-Q=mc∆9