Answer:
2.63 x 10^18
Explanation:
A = 1 cm^2 = 1 x 10^-4 m^2
λ = 10,000 nm = 10,000 x 10^-9 m = 10^-5 m
T = 37 degree C = 37 + 273 = 310 k
Energy of each photon = h c / λ
where, h is the Plank's constant and c be the velocity of light
Energy of each photon = (6.63 x 10^-34 x 3 x 10^8) / 10^-5 = 1.989 x 10^-20 J
Energy radiated per unit time = σ A T^4
Where, σ is Stefan's constant
Energy radiated per unit time = 5.67 x 10^-8 x 10^-4 x 310^4 = 0.05236 J
Number of photons per second = Energy radiated per unit time / Energy of
each photon
Number of photons per second = 0.05236 / (1.989 x 10^-20) = 2.63 x 10^18
Answer:
High ceilings make a room feel large and open, but they can be difficult to cool and heat. Because hot air rises, the challenge becomes trying to keep the hot air where you want it and preventing if from being wasted where you don't.
Explanation:
:)
<span>f(x) = 5.05*sin(x*pi/12) + 5.15
First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.
So our function at this point looks like
f(x) = 5.05*sin(x*pi/12)
But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
f(x) = 5.05*sin(x*pi/12) + 5.15
The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
f(x) = 5.05*sin(x*pi/12 + C) + 5.15
where
C = Phase correction offset.
But we don't need it for this problem, so the answer is:
f(x) = 5.05*sin(x*pi/12) + 5.15
Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
<u>Answer:</u>
<em>Equivalence point and end point are terminologies in pH titrations and they are not the same.
</em>
<u>Explanation:</u>
In a <em>titration the substance</em> added slowly to a solution usually through a pippette is called titrante and the solution to which it is added is called titrand. In acid-base titrations acid is added to base or base is added to acid.the strengths of the <em>acid and base titrated</em> determines the nature of the final solution.
At equivalence point the <em>number of moles of the acid</em> will be equal to the number of moles of the base as given in the equation. The nature of the final solution determines the <em>pH at equivalence point. </em>
<em>A pH less than 7 will be the result if the resultant is acidic and if it is basic the pH will be greater than 7. </em>In a strong base-strong acid and weak base-weak acid titration the pH at the equivalence point will be 7 indicating <em>neutral nature of the solution.
</em>