<span>Use s = ut + 1/2 at^2, so
s = 0 + 1/2 x20 x 1.8 x 1.8
s = 32.4 m.</span>
H line of Calcium spectrum is normally given as 396.9 nm
Now from a distant star we measured it as 398.1 nm
So here this change in the wavelength of distant star is due to Doppler's effect of light as per which when source of light moves towards the observer then the frequency of light received will appear different from its actual frequency
So here we can say as per Doppler's effect of light




given that






so the start is moving away with speed 9.04 * 10^5 m/s because when wavelength is more than the real wavelength then its frequency is less which mean it is moving away from the Earth
The height of the roof is <u>3.57m</u>
Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.
Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

The length of the window s is given by,

The first drop is at the bottom and it takes 5t seconds to reach down.
The height of the roof h is the distance traveled by the first drop and is given by,

the height of the roof is 3.57 m
Answer:
b. 1.1 m
Explanation:
It is given that the total distance between the masses is equal to the length of the board, which is 3 m. Therefore,

where,
s₁ = distance of fulcrum from left mass
s₂ = distance of fulcrum from right mass
In order to achieve balance, the torque due to both masses must be equal:

s₁ = 1.1 m
Hence, the correct option is:
<u>b. 1.1 m</u>